New Advance in Thoracic Surgical Technique for Lung Cancer
The Robotic Approach

Nathan Bates, M.D., F.A.C.S.
Medical Director
Cardiothoracic and Vascular Surgery
Orange Park Medical Center
Orange Park, FL
Conventional Thoracotomy

Pros
- Optimum exposure
- Safe access

Cons
- Muscle division (usually)
- Rib spreading
- Impaired pulmonary function
- Increase morbidity (compared to VATS)
Thoracotomy
Video-Assisted Thoracoscopic Surgery (VATS)

- Valid alternative to thoracotomy
 - Uncomplicated benign and malignant disease
 - Safe and feasible for early-stage non-small cell lung cancer
 - Comparable to open procedures
 - VATS lobectomy not widely adopted (utilized in 20%)
Video-Assisted Thoracoscopic Lung Resection (VATS)
VATS Lung Resection

3-5 inch incision
Technical Limitations of VATS

- Counter-intuitive orientation
- 2-dimensional imaging
- Reduced depth perception
- Limited instrument maneuverability
 - Concerns for safety of vascular dissection
- LN dissection can be difficult
VATS Lobectomy

- Relative Contraindications
 - Tumor size > 5 cm
 - Anticipated sleeve resection
 - Hilar lymphadenopathy
 - Chest wall or mediastinal involvement
 - Neoadjuvant XRT or chemotherapy
 - Prior chest surgery
VATS Lobectomy

- McKenna – Ann Thorac Surg 2006
 - 1100 pts between ‘92-’04
 - Mean LOS 4.8 days
 - 16% complication rate
 » Prolonged air leak, Afib, PNA, MI
 - 9 deaths (0.8%)
 - 4% transfusion rate
 - 2.5 % converted to thoracotomy
Open Lobectomy

<table>
<thead>
<tr>
<th>ACOSOG Z0030 - 2006</th>
<th>STS database ‘99-’06 Boffa</th>
</tr>
</thead>
<tbody>
<tr>
<td>766 pts with early stage NSCLC</td>
<td>6042 pts with early stage NSCLC</td>
</tr>
<tr>
<td>Complication rate of 37%</td>
<td>Complication rate of 32%</td>
</tr>
<tr>
<td>» Prolonged air leak 8%</td>
<td>» Prolonged air leak 8%</td>
</tr>
<tr>
<td>» Arrhythmia 15%</td>
<td>» Arrhythmia 11%</td>
</tr>
<tr>
<td>» PNA 6%</td>
<td>» PNA 4%</td>
</tr>
<tr>
<td>» LOS 6 days</td>
<td>» LOS 5 days</td>
</tr>
<tr>
<td>Mortality 1%</td>
<td>Mortality 2%</td>
</tr>
</tbody>
</table>
VATS vs Open Lobectomy

 - Review 39 studies – 3114 VATS vs 3256 open
 - Overall complication rate – 16% vs 31%
 » LOS – 8 vs 13 days
 » CT duration – 4 vs 6 days
 » Prolonged air leak, PNA, Afib were lower with VATS
 - Improved survival rates with VATS
 » Absolute survival advantage - 5% at 1 yr to 17% at 4 yrs
 – ? Less immunosuppressive
VATS vs Open Lobectomy

- Paul – J Thorac Cardiovasc Surg 2010
 - STS database – 1281 VATS vs 5042 open
 - Complications
 » Arrhythmia 7% vs 11%
 » Reintubation 1.4% vs 3.1%
 » Transfusion 2.4% vs 4.7%
 » LOS 4 vs 6 days
 » CT duration 3 vs 4 days
 » No difference in mortality
Biologic Perspective

- Several studies have demonstrated reduced inflammatory response with VATS
 - Less reduction in CD4 and natural killer cells
 - Could partially explain why perioperative outcomes are better
 - ? Lead to long term survival advantage
VATS vs Open Lobectomy

- Oncologic Perspective
 - Sugi - World J Surg 2000
 » 100 pts Stage IA NSCLC – 52 open 48 VATS
 - No difference in 3 and 5 yr survival
 - Yan – J Clin Oncol 2009
 » 5 yr survival slightly improved with VATS
 - 82% vs 79%
 - Suggests VATS at least oncologically equivalent to open lobectomy
Negative Perceptions of VATS Lobectomy

- No large prospective, randomized trials
 - CALGB trial 140501 VATS vs. Open lobectomy cancelled due to inadequate funding
- Limited utility
 - T1 lesions (< 3.0 cm) - 13% patients (Mountain, 2000)
 - Peripheral based lesions / questionable in T2, N1 (Forlian, 2001)
- Limited lymph node dissection
- Non-anatomical lobar resection
 - May compromise margin of resection
 - Simultaneous stapling - High rate of bilobectomy (Gharagozloo 2003)
- Limited data on 5 year survival for malignancy
- Mindset of the surgeon with the technique
Techniques of VATS Lobectomy

- Large series
 - Majority of VATS lobectomy w/ utility thoracotomy
 - Median length of utility incision 5 – 7 cm
 - Median operative time: Open 228 min vs VATS 204 min (Whitson, 2007)

- Totally endoscopic VATS lobectomy
 - “Closed” (Ishikawa, Surg. Endosc, 07)
 - “Complete” (Shiraishi J Thorac Cardiovasc Surg, 06)

- Limitations:
 - Incomplete fissures
 - Risk imposed by dissection of fragile pulmonary vessels
 - Difficulties encountered during lymph node dissection
Paradigm Shift to Totally Endoscopic Lobectomy with Robotic Assistance
Why Better Than VATS?

- Technical perspective
 - Better visualization
 - HD 3D vs 2D vision
 - Surgeon controls camera
 - Improved dexterity
 - Endowrist with full range of motion

- ? Better outcomes
 - Paucity of data at this point
 - At least equivalent
Robotic Video-Assisted Thoracoscopic Lung Surgery

- Anatomical dissection
- Trocar access only
- Individual dissection / ligation
 - Vascular structures
 - Bronchial structures
- Complete lymph node dissection
- No utility thoracotomy
- Lung removal performed beneath rib cage tip of 11th rib
Operating Room Layout
Trocar placement
Docking #3 Arm
Primary Dissection Arm
Parallel to spine
Docking #2 Arm
Retracting Arm

Neutral position

Abduction
Adduction
Instruments for Pulmonary Resection
Introduction of Instruments
Trans-Diaphragmatic Specimen Removal and Repair of Diaphragm
Robotic Video Assisted Thoracoscopic Lung Resection
Cao et al, Annals CT Surgery 5/2012

- **Meta-analysis of 12 institutions**
 - Mortality – 0-3.8%
 - Morbidity – 10-39%
 - Prolonged air leak – 4-13%
 - Tachyarrhythmias – 3-19%
 - Pneumonia – 1-5%
 - Conversion to thoracotomy – 0-19%
 - LOS – 2-11 days
 - OR time – 130-238 min
11/2002-5/2010 325 pts at 3 institutions for early stage NSCLC

- Morbidity – 25%
 - SVT – 11% most common
- Conversion to thoracotomy – 8%
- Mortality – 0.3%
- LOS – 5 days
- 5 yr survival – 80%
 - Stage 1 – 88%, stage 2 – 49%, stage 3 – 43%
- Data c/w prior results for thoracotony and VATS
Robotic-Video-Assisted Thoracoscopic Lung Resection

- **Cost comparison** (Park, Ann CT Surg 5/2012)
 - Thoracotomy > RVATS > VATS
 - Thoracotomy $4000 more than RVATS
 - RVATS $4000 more than VATS
 - Main reason RVATS and VATS cheaper due to shorter LOS
 - ? RVATS worth the inc expense
 - Inc surgical volume – market driven
 - Better platform with 3-d visualization and better dexterity
Robotic-Video-Assisted Thoracoscopic Lung Resection
Mark Dylewski, M.D. South Miami Hospital Center for Robotic Surgery

- 206 cases underwent robotic-video-assisted thoracoscopic anatomical lung resection from January 2007 – September 2010
- 110 female / 96 males
- Ages range from 20 – 92 years of age
- Median age of 68 years
- Median Tumor size 2 cm (0.7-8.5 cm)
Robotic-Video-Assisted Thoracoscopic Lung Resection (RVATS)

Type of Lobectomy
- RUL
- RML
- RLL
- LUL
- LLL
- Sleeve
- Lobe w/ EBR

Type of resection
- Segment
- Bilobectomy
- Lobectomy
- Pneumonectomy

EBR- enbloc resection
Stage of Lung Cancer and Tumor Type (n=150)

- Stage IIA: Adenocarcinoma (38), Squamous cell (19), Carcinoid (13)
- Stage IIB: Adenocarcinoma (9), Squamous cell (8), Carcinoid (2)
- Stage II: Adenocarcinoma (9), Squamous cell (2), Carcinoid (7)
- Stage IIIA: Adenocarcinoma (7), Squamous cell (7), Carcinoid (3), Others (5)
- Stage IV: Adenocarcinoma (1), Squamous cell (1), Others (1)
Robotic-Video-Assisted Thoracoscopic Anatomical Lung Resection (RVATLR)

- Median length of stay (days) 3 (range 1-44)
 - Traditional VATS lobectomy (2003-06): LOS 4 days
- Median length of ICU stay (days) 0.5 (range 0-15)
- Median blood loss (cc) 72 (range 25-500)
- Median chest tube duration (days) 1.5 (range 1-15)
- Median operative time (min) 90 (range 30-280)
- Total OR time (min) 175 (range 83-370)
- Median lymph node stations 5 (range 4-8)
Operative Time

Estimated learning curve: 37 cases
COMPLICATIONS

Fatal error...
Perioperative Complications

Death
Pneumothorax
Reop Bleeding
Stroke
Conversion/difficulty
Conversion bleeding
Splenectomy/bleeding
Air leak > 6 days
Mural Thrombus
Effusion
Arrhythmia
Post-op bleeding
Myocardial infarction
Pneumonia
Wound infection

n = 49 (23.7%)

EBR- en bloc resection

Common Terminology Criteria for Adverse Events and Common Toxicity Criteria – Grade 2-3
Robotic-Video-Assisted Thoracoscopic Lung Resection

- Complications:
 - 60-day Mortality (3/206) 1.4% / Morbidity (49/206) 24%
 - Pneumonia / Aspiration in 8 (3.9%) patients
 - Recurrent effusion / Thoracentesis in 12 (5.8%) patients
 - Prolonged air leak greater than 6 days in 13 (6.3%) patients
 - Post-op myocardial infarction or CVA in 2 (0.97%) patients
 - Hemorrhage 3 (1.4%) patient
 - Splenectomy / Blood transfusion / Atrial fibrillation / Mural thrombus / pneumonia (1)
 - Hemothorax requiring reoperation (1) and post op transfusion 2 Units (1)
 - Supraventricular Arrhythmia 6 (2.9%)
 - Splenectomy 1 (0.5%)
 - Conversion to conventional VATS or thoracotomy 4 (1.9%)
Value of Robotic-Assisted Lobectomy Over Conventional VATS Lobectomy

- Models conventional surgical techniques
- Improved accuracy of dissection
 - Allows precise isolation of vascular structure
 - Meticulous dissection
 » Reduces iatrogenic trauma limiting air leaks (6.3%)
 » Limiting blood loss
 » Reduces post-op bleeding and transfusion rate (1.6%)
 » McKenna, 07- transfusion rate – 4.1%
 - Limited manipulation of lung and tumor mass (No touch technique)
 » Reduces likelihood of tumor translocation
 » May attribute to low rates of SVT (2.9%)
 » VATS lobectomy: Rate SVT (McKenna, 07 –2.9%, Duke University, 02 – 3.7%)
 - Allows complete dissection of lymph node stations
Value of RVATS Over Conventional VATS Lobectomy

- **No need for access incision**
 - Performed through 4 ports often positioned along a single rib space
 - No need for extension of thoracic incisions to remove lobe
 - Reduced pain and neuralgia
 - Reduces morbidity and mortality

- **Wider utilization**
 - Locally advanced disease
 - Large tumor size

- **Reduced port site recurrences**
 - McKenna 2006 – 0.6%
Summary

- Conventional total endoscopic video-assisted anatomical lung resection is technically demanding
- Advancements in robotic-assisted platforms have made possible reliable total endoscopic video-assisted pulmonary resection
- Robotic-assisted anatomical lung resection is feasible and safe
- Compares favorably to historical series of conventional open and VATS lobectomy
- Robotic-assisted lobectomy is associated with low morbidity, low mortality and short LOS
- No additional OR personnel required
- Total OR and Operative times are favorable to VATS approach